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Abstract

This paper presents some recent developments in
the technologies of ISRU with the specific intention
of cost reductions in space missions. Recognizing
that a certain level of technology maturation is
necessary before the mission designers will
seriously consider any technology, the hypothesis is
made that the overall cost-index is inversely
proportional to the TRL. Also recognizing that the
cost is directly proportional to the mass at launch,
the cost-index is identified as the ratio of the launch
mass to the TRL. Whether this cost-index is the
true measure of the overall mission cost is arguable;
however, the relative costs of comparable
technologies can be readily assessed by applying
identical rules of such an evaluation. As one
example of this approach, Mars Sample Return
(MSR) is studied, and nine competing teclhnologies
are evaluated for the key Mars Ascent Vehicle
(MAV). It is found that the technology of oxygen
production through the dissociation of atmospheric
carbon dioxide can be a key technology. In addition
to reporting upon this technology brefly, one
innovative application that significantly enhances
the science capabilities of a rover is discussed.

INTRODUCTION

Cost, perceived or real, continues to
be a major deterrent in the timely
execution of space missions. Despite
rosy promises by managers, and
valiant efforts by engineers, the cost
of the first step itself (space access)
continues to be around $10,000/kg to
LEO, and much higher for planetary
targets. Smaller, cheaper, faster,
better approaches to spacecraft (the
payload) have introduced significant
economy, compared to previous
missions; however, when more
ambitious missions are considered,
the state-of-the-art costs continue to
be high.

Three facets of this cost issue are
important. First, improvements are
necessary in the launch system. The
trend towards RLV’s from the ELV’s
is encouraging. A program on
hybrids®® has been making advances
in  lower costs through simpler
propellants. Second, the advancsas in
micro-technologies® will help us
achieve greater science returns “or a



given mass. Third, an entirely new
approach to space  missions,
specifically utilizing local resources
mstead of relying upon earth-
transported resources, has been
studied for a number of years'!’, but
not executed in any space missions so
far. In addition to the understandable
reluctance to try something “untested
and new”, in the place of “tried and
proven” components, on high-profile
missions which are constantly under
media scrutiny, it is only fair to
acknowledge that these ISRU
technologies have not yet advanced to
acceptable TRL’s, at least in the
judgment of the mission planners; the
burden of the proof-of concept of
ISRU 1s on the engineers.
Additionally, there is need for a
rational, quantitative methodology for
evaluating the overall economics of
ISRU, just as it is the case for any
component of a spacecraft. What had
been an “innate feel” and “expernence
driven evaluations” were given a
formal structure through the Figure-
of-Merit concept, first proposed® in
1989.  The overall mission was
divided into five major components:
(1) the trajectory/orbital mechanics,
(2) transportation/propulsion, (3) ¢’I,
(4) power/support components, and
(5) ISRU. These five components
were studied 1n detail for any mission;
however, the heart of the new concept
i1s the recognition that the effective
combination of these components is
far more important than achieving the

best available components by
themselves. This FoM can be, in fact
should be, different for different
missions. For example, in a simple
earth-observation mission, the number
of bits of data received per kg of
launch mass could be one definition;
on the other hand, in a sample retum
mission, the mass of sample returned
to earth divided by the mass of the
initial craft leaving the earth, may be a
better definition. While these are only
the initial steps towards an acceptable
FoM, the overall costs and nisk must
be introduced for a fuller reflection of
the true picture. The numerical values
of the component performance are
constantly changing, especially in
ISRU, and the best estimates (1997)
are used in this paper.

The specific example of Mars Sample
Returmn (MSR) 1s studied in the
context of a simple (direct) ascent
which 1s taken to require 6km/s
(incremental velocity, or, delta v).
While other maneuvers are possible
such as throttling, multistaging, or,
combinations  thereof, for the
purposes of this comparative study,
the simple approach illustrates the
point.

THE BACKGROUND

There 1s need for a quantitative and
rational methodology for estimating
the overall (mission) effect of
choosing various subsystems that



comprise the spacecraft.” (Ideally,
one would like to extend the choices
beyond the spacecraft subsystems,
and include the other details such as
the orbital mechanics and the
communication network). With a
description of the components, it is
desirable to predict the outcome, of
which life-cycle costs and the
reliability (probability of success)
appear to be very important currently
(1996-97). The Technology
Readiness Levels (TRL) of various
components play a role in the mission
outcome; generally, lower TRL’s
lead to greater costs that must be
invested to bring the component to a
sufficiently high TRL to be
flightworthy. On the other hand, it is
possible to use a lower TRL
component, and accept the penalty.
This penalty is usually in the form of
heavier mass, or superfluous sub-
components. The heavier mass (at
launch) can be translated into cost.
However, it is not clear that the lower
TRL components are any less reliable
than the higher TRL ones. A simple
example may help illustrate the point.
In the field of ISRU for low-cost
Mars missions, the production of
oxygen and a fuel has been pursued
for a long time. The technology of
solid oxide electrolysis of
atmospheric carbon dioxide is almost
100 years old (Walther Nernst, U.S.
Patent #623,811, dated April 25,
1899). For a long time, the preferred
geometrical configuration has been

(5]

the tube, which has the advantage of
cooler ends for easy seals, and the
preferred  material  has  been
“ceramic” polycrystalline zirconia
doped with vacancy promoters. This
system has been studied by a number
of companies, notably, Westinghouse,
Ceramatec, and United Technologies.
While continuing to pursue other
higher-tech options, the University of
Arizona, NASA Space Engineering
Research Center (SERC) built and
delivered a four-cell, lower TRL
system to NASA LeRC for
demonstration purposes®. First used
at LeRC in the summer of 1992, with
a few simple modifications, the unit
has worked reliably since. In fact,
LeRC has operated this unit at several
locations in the USA during the AIAA
annual propulsion meetings. At the
end of a typical 30 minute
presentation, it has operated a CO-0;
rocket to confirm that the fuel-
oxidizer produced can indeed develop
thrust in a rocket motor. The higher-
tech options that the UA SERC has
pursued since that time have been
most  promising, shown higher
efficiency and a much higher specific
production rate, but have simply not
been as reliable; they have failed at
various levels. The main point is that
the lower TRL “kluge” unit, although
heavy and power-hungry, has
operated more reliably than the higher
TRL units.



The complexity of the system can be
expected to lead to lower reliability.
Again using the above example, the
lower TRL ceramic tube unit is very
simple, while the higher TRL units are
more complex.

- THE BASIC HYPOTHESES

The basic hypotheses used in this
paper are:

the overall mission cost 1s inversely
proportional to the TRL, and

the probability of mission failure is
directly = proportional to  the
complexity.

It 1s understood that the TRL and
complexity are independent of each
other. This highly simplified
approach has the advantage that the
usual cost index, namely the mass at
launch can be divided by the TRL to
arrive at a relative cost index for
competing technologies; similarly, the
complexity number is divided by the
TRL to armive at a relative (probability
of) failure index for missions using
competing technologies.

Relevant work by others in the field
are available in references 18-24. It is
important to clearly understand a
fundamental point of difference:
“risk”, as used by many of the
authors, seems to be the program
risk.  That is, an evaluation of
whether the program (leading to the

launch) will, or will not, meet its cost
goals. In the current interpretation,
the risk is clearly the probability that
the mission will fail to meet its
goal(s). In addition, some of the
authors have  restricted their
methodology to the launch vehicles,
and some to small satellites only.
Thus, the current work, although a
simple first step, is different from the
available studies.

The TRL and complexity numbers
(indices) are armived at using the
NASA ITP document (1991), where
the TRL definitions leave very little
room for interpretation. In the area of
previous missions, the Voyager
(MJS77) was chosen for comparisons.
Here, the TRL of components that
were selected (1977) were discerned
through a  detailed telephone
conversation with Bud Schurmeier.
The objective of this exercise was to
show that the current approach can be
verified for its intrinsic ment through
its “predictions” of a past successful
mission.

The approach wuses a simple
spreadsheet to interlink the wvarious
calculations.

The example is Mars Sample Return.
Recent studies have shown that the
Mars Ascent Vehicle (MAV) is the
most critical component of the overall
mission. For this reason, this initial
study considers variations in the



MAYV  propulsion options. The
incremental velocity for the Mars
ascent (returning towards earth) is
calculated to be 6 km/s. If different
trajectory plans are used, the number
could change, but will not alter the
main message of this report. A
consistent structural factor is used
from the literature. (In the case of
hydrogen storage, extensive literature
search, and contacts with experts in
the field, led us to the number used,
namely, two kg of inert mass for
every kg of hydrogen stored; in fact,
there appears to be no known case of
successful storage of liquid hydrogen
in space for longer than a few
months.) The nine options encompass
the wusual technology options for
propulsion.  These vary from the
tried-and-tested LOX-Hydrogen
system at a TRL of 9, to...the
Interesting possibility of a simple
hybrid rocket at a much lower TRL.
Also included are the traditional
storage mono and bipropellant
systems. One recent contender has
been the glow discharge system
pioneered at ODU for the production
of a fuel (CO) and the oxygen from
atmospheric carbon dioxide.

Admittedly, some interpretation and
technical judgment are involved in the
complexity numbers. However, it is
emphasized that changes in these
numbers will not affect the
mainstream theme of this report which
1s showing a methodology for rational

comparisons of competing
technologies. In other words, what is
presented is a “living” spreadsheet
where different input data can be
incorporated.

THE RESULTS

The results are presented in tabular
and graphical form. It is interesting to
note that the hybrid rocket emerges as
the clear winner in terms of lower
cost and overall merit. The relative
ranking, or the merits of one system
over the other, are secondary to the
main conclusion: the current approach
provides the first step in a rational
evaluation of competing technologies
in space missions. The probability of
failure, as used here, is merely a
relative index of the competing
systems. Thus, a number equal to or
greater than 1 (one) should not be
(mis)interpreted to mean certainty of
failure. It merely states the fact that a
high number means a higher
probability of failure, or inherent risk
compared to a lower number system.

Future work should pursue the further
refinement of the approach and should
specifically examine the immediate
and future missions of importance.
These could include all of the Mars
Surveyor missions, and the aerobot
missions.

The inherent simplicity and flexibility
of the current approach have much to



offer in comparison with more
sophisticated cost/risk models.

SUMMARY

This preliminary work, aimed at
relating the emerging ISRU approach
to. the overall economics of space
missions, has shown promise in
identifying a Figure-of-Merit that can
be an index of the overall
effectiveness. The aim, at this stage,
is only to indicate the technique of
assessing the cost/benefit of using any
new family of technologies; here we
have chosen to illustrate the point
with  ISRU. The  specific
technological advances in ISRU are
not the subject of this paper. The
recent advances are available from
our website, and one specific advance
in the area of greatly enhanced
science return through an intelligent,
locally refueled robot (Locally
Refueled Planetary Explorer, or,
LORPEX) was the subject of a recent
paper-". Several other related
technologies have also been pursued,
and vary from water use.on Mars? to
thermal control®® to testbeds?’ to
some lunar applications®® as well.
More detailed accounts of ISRU and
asteroidal impacts, with the possible
interest in mining them, are available
mn references 29-31. It is hoped that
these technological advances,
combined with a rational, quantitative
methodology for evaluating the
overall economics, will provide the

incentive for embarking upon an
entirely new class of reliable, low-
cost, high-return science missions of
the near-term future explorations.
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